Math 432: Set Theory and Topology

Exercises from Kaplansky's book.

Sec 4.4: 2, 9

Sec 5.1: 2, 6, 7

- **1.** For each $n \in \mathbb{N}$, define $f_n : (0, \infty) \to \mathbb{R}$ by $f_n(x) := \frac{nx}{1+n^2x^2}$.
 - (a) Show that $f_n \to 0$ pointwise, i.e., for every $x \in (0, \infty), f_n(x) \to 0$.
 - (b) Show that $(f_n)_{n \in \mathbb{N}}$ does not converge uniformly to the constant 0 function.
 - (c) However, for each $\alpha > 0$, prove that the sequence of restrictions $(f_n|_{(\alpha,\infty)})_{n\in\mathbb{N}}$ uniformly converges to the constant 0 function.
- **2.** Let $(x_n) \subseteq \mathbb{R}$ be bounded. Say a real $r \in \mathbb{R}$ is *left of* (x_n) if $\forall^{\infty} n \ r \leq x_n$. Let *L* denote the set of reals left of (x_n) . Put $l := \sup L$ and prove the following.
 - (a) L is a nonempty initial segment in $(\mathbb{R}, <)$ and it is bounded above (hence $l < +\infty$).
 - (b) If, for some $\varepsilon > 0$, $\forall^{\infty} n \ x_n \notin (l \varepsilon, l)$, then $l \in L$.
 - (c) If $l \in L$, then, for every $\varepsilon > 0$, $\exists^{\infty} n \ x_n \in [l, l + \varepsilon)$.
 - (d) There is a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ converging to l.
- **3.** Prove that the Cantor space $2^{\mathbb{N}}$ with its usual metric is a complete metric space.